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Abstract

Fully-developed convection heat transfer for electro-osmotic flow in a circular microtube has been investigated for

arbitrary wall zeta potentials under conditions of imposed wall temperature and imposed wall heat flux. The coupled

differential equations governing charge potential, momentum, and energy were solved numerically. It has been deter-

mined that elevated values of wall zeta potential produce significant changes in the charge potential, electro-osmotic

flow field, temperature profile, and Nusselt number relative to previous results invoking the Debye–Hückel lineariza-

tion, which is valid only for low wall potentials.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Fluid transport in microtubes is found in a variety of

emerging applications from inkjet printers to biomedical

devices. Traditional pressure-based methods of inducing

flow in channels of cross-sections less than 100 lm can

be prohibitive due to the extraordinarily high pumping

pressures required. Further, precise control and stability

are often requisite, and are difficult to achieve using tra-

ditional technologies. Electro-osmosis offers benefits

over conventional pressure-driven flow in microchan-

nels. It represents an efficient, precisely controllable

means of driving flow which requires no moving parts.

Further, electro-osmotic flow produces velocity profile

characteristics which are desirable in a number of appli-

cations.
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Electro-osmosis is the bulk motion of a fluid due to an

applied electric field [1]. When exposed to an ionizing

fluid, many solid materials will develop a small electric

charge at their surface. This charge will attract ions of

opposite charge in the fluid layer adjacent to the solid

surface. The result is the formation of a layer of charged

ions near the surface called the electric double layer

(EDL).Within the EDL there is an excess of charged ions

distributed diffusely from amaximum concentration very

near the solid surface, termed the wall or zeta potential,

fw, to a neutral charge state in the core fluid far from

the surface. Typical wall potentials range from 30 to

200 mV [2], although it may be possible to tailor the wall

potential by imposing voltage gradients in the direction

normal to the microchannel axis [3], thus yielding wall

potentials in excess of these limits. The thickness of the

EDL is characterized by the Debye length, k, which

defines the distance from the charged solid surface to

which the charge drops to e�1 (37%) of its maximum.

The Debye length is a function of the electro-chemistry

of the liquid–solid combination, and can range from a
ed.
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Nomenclature

a tube radius

c fluid specific heat

c0 concentration of ions in bulk fluid

Ee normalized ratio of total Joule heating per

unit tube length, Eq. (15)

Ee total Joule heating per unit tube length, Eq.

(14)

Ex imposed axial potential gradient

h convective heat transfer coefficient

ie conduction current density

k fluid thermal conductivity

Nu Nusselt number, h(2a)/k

r radial coordinate

R normalized radial coordinate, r/a

Ru universal gas constant

q00w wall heat flux

S Joule heating parameter, E2
xa=rq

00
w

ST Joule heating parameter yielding a constant

wall temperature condition, Eq. (16)

T local absolute temperature

Tm mixed mean temperature

Tw tube wall temperature

u local fluid velocity

ueo maximum possible electro-osmotic velocity,

(efw/l)Ex

�u average velocity

U normalized local velocity u/ueo
U ratio of mean velocity to maximum electro-

osmotic velocity, �u=ueo
x streamwise coordinate

z± valence number of the positive/negative ions

in solution

ze valence number of the univalent solution

Z electro-kinetic radius, a/k

Greek symbols

a fluid thermal diffusivity

e fluid permittivity

k Debye length, ðeRuT=2z2eF
2c0Þ1=2

l fluid absolute viscosity

qe local charge density

r fluid electrical resistivity

h normalized temperature, ðT � TmÞ=ðq00wa=kÞ
hw normalized wall temperature, ðTw � TmÞ=

ðq00wa=kÞ
w local charge potential

W dimensionless charge potential, zeFw/RuT

fw wall zeta potential
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few nanometers to as high as 1 lm. Higher ion concen-

trations (resulting, for example, from increased dissolved

solute) decrease the Debye length. Electro-osmotic flow

occurs when the charged ions in the EDL respond to

an externally applied electric field. Charged ions in the

EDL are attracted to the oppositely charged electrode,

and their movement induces fluid flow by viscous drag.

In microchannels, viscous shear transmits these body

forces in the EDL to the channel core where little/no elec-

tro-kinetic body force exists, pulling the fluid toward the

electrode. When the Debye length is small compared to

the microtube dimension the momentum body force is

confined to a small region near the tube wall, and the

resulting velocity profile is uniformly flat. If, on the other

hand, the Debye length is of the same order as the micro-

tube dimension, the body force is more uniformly distrib-

uted across the tube cross-section and the velocity profile

resembles that of a traditional pressure-driven flow.

Thus, the ratio of channel radius to Debye length, some-

times termed the electro-kinetic radius, is a key para-

meter in characterizing the hydrodynamic behavior of

electro-osmotic flow. Typical velocities in electro-osmotic

flow in microtubes are of the order of a few mm/s.

A considerable body of work in the literature has re-

ported on electro-osmotically generated flow in micro-
tubes. The hydrodynamic problem has received

considerable recent attention, with analytical/numerical

investigations exploring electro-osmotic flow in a num-

ber of geometric configurations [4–10]. This has been

accompanied by significant recent effort in developing

and exercising experimental techniques for characteriz-

ing the electro-osmotic flow in microchannels [11–16].

The characteristics of hydrodynamically developing

electro-osmotic flow have also been studied [17,18], as

has the influence of variations in fluid and surface prop-

erties [19–22].

Prior work characterizing the convective heat trans-

fer in electro-osmotic flow is less abundant. Since the

body force is strongly coupled to the charge distribution

in the microchannel, the velocity profiles resulting from

electro-osmotically generated flow differ dramatically

from that of classical pressure-driven flow. Further,

the applied voltage gradient results in the passage of

electrical current through the fluid column, resulting in

Joule heating. The combination of unique velocity pro-

files and Joule heating yield temperature distributions

and associated heat transfer characteristics which are

quite unlike those of pressure-driven flow. There has

been considerable work seeking to explore Joule heating

effects in electro-osmotic flow [23–30]. However, the
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focus of these studies has been the fluid heating and the

possible degradation in capillary electrophoresis perfor-

mance, and they therefore have not explored the convec-

tive heat transfer in such flows. Some early work

explored the general effect of volumetric energy dissipa-

tion on the thermal development in channels under pres-

sure-driven flow conditions [31–33].

Recently, analytical solutions for the fully-developed

temperature distributions and Nusselt number were pre-

sented for fully-developed electro-osmotic flow in paral-

lel plate and cylindrical microchannels at low wall

potential [34]. The analysis was subsequently extended

to include the influence of viscous heating [35]. An ana-

lytical solution for the thermally developing temperature

distribution for electro-osmotic flow in rectangular

microchannels under the infinitely thin Debye layer

assumption was also presented [36]. These heat transfer

studies, however, have employed the Debye–Hückel

approximation, in which a linearization of the charge

distribution is invoked. This assumption restricts the

wall potential to less than 20–25 mV [1]. The Debye–

Hückel approximation yields a linear dependence of

the momentum body force on charge potential in the

fluid, and Joule heating which is unrealistically uni-

formly distributed over the microtube cross-section. In

most applications, however, the wall potential is much

higher than the Debye–Hückel linearization would

allow. This paper reports solutions for hydrodynamically

and thermally developed electro-osmotic transport in

cylindrical microtubes at arbitrary wall potentials. Ana-

lytical solutions for velocity and temperature profiles at

realistic values of wall zeta potential are not feasible,

and recourse is therefore taken to numerical methods.
2. Analysis

Consider steady-state, hydrodynamically and ther-

mally fully-developed electro-osmotic flow of a fluid in

a cylindrical tube of radius a. Temperature differences

are assumed to be small, with associated negligible tem-

perature-dependence of the electrical and thermophysi-

cal properties. The radial distribution of charge

potential, w, in the microtube is governed by the Poisson

equation [1]

e
r
d

dr
r
dw
dr

� �
¼ qe ð1Þ

where e is the (constant) permittivity of the fluid, and qe is
the local charge density. Assuming the solution is in ther-

modynamic equilibrium, the charge density is related to

the charge potential by the Boltzmann distribution [1] as

qe ¼ Fc0z exp z Fw=RuTð Þ � Fc0zþ exp zþFw=RuTð Þ ð2Þ

which, assuming a symmetric electrolyte of valence num-

ber ze may be cast in the form
qe ¼ 2zeFc0 sinh
zeF
RuT

w

� �
ð3Þ

F is Faraday�s constant, Ru is the universal gas constant,

c0 is the concentration of ions in the bulk flow, and T is

the absolute temperature. In the Debye–Hückel lineari-

zation, valid only at low wall potentials (and conse-

quently, low w), the assumption is justifiably made

that sinh(zeFw/RuT) � zeFw/RuT [1]. In this study arbi-

trary wall potentials are considered, and the non-linear

form of the Boltzmann equation source is retained.

Boundary conditions associated with Eq. (1) are symme-

try at the tube centerline and known zeta potential at the

wall. Defining a dimensionless radius and charge poten-

tial, respectively, as R = r/a and W = zeFw/RuT, Eq. (1)

becomes

1

R
d

dR
R
dW
dR

� �
¼ Z2 sinhðWÞ ð4Þ

Here, Z is the electro-kinetic radius of the system, de-

fined as the ratio of the microtube radius to Debye

length, Z = a/k The Debye length is defined as k ¼
ðeRuT=2z2eF

2c0Þ1=2. Boundary conditions for the charge

potential are

R ¼ 0 :
dW
dR

¼ 0 ð5aÞ

and

R ¼ 1 : W ¼ Ww ¼ ðzeF fw=RuT Þ ð5bÞ

The velocity profile is governed by the streamwise

differential momentum equation, which, in the absence

of applied pressure gradients becomes

l
r

d

dr
r
du
dr

� �
¼ �qeEx ð6Þ

l is the fluid viscosity and Ex is the applied voltage po-

tential gradient along the axis of the microtube. Note

that the charge density, and hence the charge potential,

appears in the source term for fluid momentum, thus

coupling the governing equations for charge potential

and momentum. The body force inducing electro-osmo-

tic flow exists only in regions of non-zero charge poten-

tial. One may define a dimensionless velocity as U =

u/ueo, where ueo = (efw/l)Ex is the maximum possible

electro-osmotic velocity. At high electro-kinetic radius

Z, the velocity profile is radially uniform with a magni-

tude ueo. This is the classical Helmholz–Schmolukowski

condition [1]. The grouping efw/l is often termed the

electro-osmotic mobility of the fluid. With this normali-

zation the momentum equation may be written in non-

dimensional form as

1

R
d

dR
R
dU
dR

� �
¼ � Z2

Ww

sinhðWÞ ð7Þ
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with associated symmetry and no-slip boundary condi-

tions at the microtube centerline and wall, respectively:

R ¼ 0 :
dU
dR

¼ 0 ð8aÞ

R ¼ 1 : U ¼ 0 ð8bÞ

Thermal transport in the flow is governed by the dif-

ferential energy equation, written as

qcu
oT
ox

¼ k
r
o

or
r
oT
or

� �
þ i2er ð9Þ

The last term on the right-hand side of Eq. (9) represents

the Joule heating source term, with ie and r being the

local current density and fluid electrical resistivity, respec-

tively. The current density is related to the charge poten-

tial by the relation

ie ¼
Ex

r
cosh

zeF
RuT

w

� �
ð10Þ

The current density and hence, Joule heating source

term in the energy equation, depend on the local charge

potential w. It is noted that viscous heating has been ne-

glected in Eq. (9). For low wall potentials, it has been

shown that viscous heating is non-negligible in electro-

osmotic flow only in nanoscale channels [35]. It will be

shown herein that increases in the wall potential result

in a significant increase in the magnitude of the Joule

heating, and thus, the viscous heating influence is incon-

sequential. For an imposed constant heat flux at the

wall, q00w, a thermally fully-developed condition exists

where the gradient of local temperature in the stream-

wise direction is constant and equal in magnitude to

the mean temperature gradient, oT/ox = dTm/dx = con-

stant. The streamwise gradient in mean temperature is

determined from an overall energy balance on the fluid:

qc�ua2
dTm

dx
¼ 2q00waþ 2

Z a

0

i2errdr ð11Þ

where �u is the mean velocity in the microtube. Eq. (11)

reveals that the mean temperature rises linearly in the

thermally fully-developed regime to accommodate the

combined energy input of the imposed wall flux and

Joule heating over the channel cross-section. Defining

a dimensionless temperature as a normalized difference

between the local temperature and mean temperature,

h ¼ ðT � TmÞ=ðq00wa=kÞ, and substituting Eqs. (10) and

(11) into Eq. (9) yields the dimensionless differential

energy equation

1

R
d

dR
R
dh
dR

� �
¼ 2

U

U
1þ S

Z 1

0

cosh2ðWÞRdR
� �

� Scosh2ðWÞ ð12Þ

U is the dimensionless mean velocity in the channel,

U ¼ �u=ueo. It might be noted that in the limiting case
of low wall potential, cosh2 (W)! 1, and the source term

due to Joule heating becomes constant and independent

of R. Eq. (12) is subject to boundary conditions reflect-

ing symmetry and the imposed wall flux,

R ¼ 0 :
dh
dR

¼ 0 ð13aÞ

and

R ¼ 1 :
dh
dR

¼ 1 ð13bÞ

The dimensionless parameter S ¼ E2
xa=rq

00
w which

appears in the normalized energy equation may be

interpreted as the relative strengths (ratio) of the

volumetric Joule heating in the low-fw limit E2
x=r, and

the fluid heating due to imposed wall heat flux q00w=a.
Note that the dimensionless Joule heating parameter S

may range in magnitude from 0 (for vanishing Joule

heating and/or infinite wall flux) to 1 (for vanishing

wall heat flux). Further, a scenario will be identified

hereafter for which the Joule heating parameter S may

take on a single, negative value for a given electro-

kinetic radius and dimensionless wall potential. This

condition defines a constant wall temperature thermal

boundary condition, wherein all energy generated volu-

metrically in the fluid due to Joule heating is dissipated

at the microtube wall, yielding a negative wall heat flux

q00w.
It should be underlined that the analysis presented

here has invoked the traditional assumption that the

electrical and thermophysical properties are independent

of temperature. Of course, these properties do depend

on temperature. The dielectric constant of water de-

creases by approximately 0.5%/�C in the temperature

range 20–80 �C [37]. The electrical and thermal conduc-

tivities increase by approximately 2–3%/�C and 0.1–

0.3%/�C, respectively. The viscosity of water decreases

with temperature by 1.2–2.3%/�C [38]. In the most rigor-

ous analysis, Eqs. (3), (6) and (9) are fully coupled

through the property dependence on temperature. It

should thus be stated that the influence of tempera-

ture-dependent properties may be non-negligible, and

the effect of such can only be characterized for a specific

electro-osmotic flow/heat transfer scenario by solving

the fully coupled equations with temperature-dependent

properties. Such a solution is possible. However, for the

sake of generality in this exploration of the effects of

high zeta potential on the convective heat transfer, the

analysis focuses on the limiting case of constant proper-

ties. The momentum equation, Eq. (7), is thus dependent

on the solution to the charge potential equation, Eq. (4),

only through W in the electro-osmotic momentum

source term. Further, the energy equation, Eq. (12),

exhibits only one-way coupling to both momentum

and charge potential equations through the distributions

of U and W.



Fig. 1. Illustration of numerical grid refinement required to

accurately resolve high gradients in wall potential, electro-

osmotic velocity, and Joule heating.
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Eqs. (4), (7) and (12) constitute differential equations

governing the charge, momentum, and energy transport

in the microtube. The solution requires specification of

the electro-kinetic radius Z, the dimensionless wall po-

tential Ww, and the Joule heating parameter S. For arbi-

trary values of Ww, the charge potential equation, Eq.

(4), is non-linear and must be solved numerically using

an iterative approach. Once the dimensionless charge

potential distribution is known, Eqs. (7) and (12) are lin-

ear but with radius-dependent source terms, and their

solution is straightforward. A control volume approach

was adopted for the solution of the governing equations

[39]. The radial domain is discretized and Eqs. (4), (7)

and (12) are each integrated over an arbitrary cell. A

suitable assumption for the variation in dependent vari-

ables between nodes is then used to evaluate the inte-

grals. Boundary conditions are imposed similarly by

integrating the governing differential equations around

the boundary cells, and specifying the boundary condi-

tion in the evaluation of the integrals. The discretization

procedure yields a set of coupled, nominally linear alge-

braic equations for the dependent variable at all node

points. As stated previously, the differential equation

for charge potential, Eq. (4), is non-linear and therefore

mandates an iterative solution. Since the source term in

the charge distribution equation, Eq. (4), depends on

charge potential, the source-term linearization proce-

dure outlined by Patankar was used to accelerate con-

vergence [39]. Iterations were carried out until the

absolute maximum residual in W (local imbalance in

conservation of W at any given cell) was less than

10�7. After the charge potential distribution had been

determined, the velocity and temperature fields were

solved directly with substitution of the charge potential

field in the source terms in Eqs. (7) and (12). The

fully-developed Nusselt number was then calculated

from its definition, Nu = h(2a)/k, which, in dimension-

less form may be written Nu = 2/hw, where hw is the pre-

dicted dimensionless wall temperature. Thus, the local

charge potential, velocity, temperature, and Nusselt

number, respectively, exhibit the functional dependen-

cies W = W(Z,Ww,R),U = U(Z,Ww,R),h = h(Z,Ww,S,

R), and Nu = Nu(Z,Ww,S).

A non-uniform grid was employed to permit place-

ment of nodes in regions of highest gradients. The nodes

were deployed using a parabolic relationship between

local node number and radial location, with clustering

near the microtube wall. An exhaustive grid indepen-

dence study was carried out to determine the cell resolu-

tion required for accurate predictions. Steep gradients in

both charge potential and velocity may exist for high

values of the electro-kinetic radius Z. Further, the local

Joule heating source terms, described by cosh2 (W), may

be extremely high near the microtube wall at high wall

potentials. Fig. 1 illustrates the predicted fully-devel-

oped Nusselt number as a function of number of cells
used in the simulation for several different cases. Note

that for low Z and Ww, accurate predictions may be

achieved with a few tens of cells. Higher Z requires sev-

eral hundred cells to resolve the high gradients in W and

U. At the extreme values of both Z and Ww however,

and despite the clustered grid employed, as many as

50,000 nodes are required to adequately resolve the steep

charge potential, velocity, and Joule heating source gra-

dients. For all of the simulations presented here, double

precision was used in the calculations, and the grid was

refined until the predictions for mean velocity and Nus-

selt number for successively finer grids both ceased to

change by more than 1%. Furthermore, numerical pre-

dictions from this study for Ww ! 0 reproduce the ana-

lytical results for Nu of Maynes and Webb [34] over the

full range of electro-kinetic radius Z and Joule heating

parameter S to within 0.7%.
3. Results and discussion

The predicted normalized charge distribution in the

tube is shown in Fig. 2 for electro-kinetic radius Z =

a/k of 1, 10, and 100, and for varying absolute dimen-

sionless wall potential, jWwj = jzeFfw/RuTj. The radial

variation in charge for arbitrary wall potential has been

previously reported [6]. However, these predictions are

reproduced here because of their influence on the ther-

mal transport through the local Joule heating, and for

completeness. With no external modification of the wall

potential through the use of externally applied lateral

voltage [3], typical dimensionless wall potentials may



Fig. 2. Radial profiles of dimensionless charge potential as a

function of jWwj and Z.

Fig. 3. Radial profiles of the mean electro-osmotic velocity as a

function of jWwj and Z.
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vary from 1 to 10 (corresponding to a nominal wall zeta

potential magnitude between 25 and 250 mV). The low-

wall-potential limit invoked by the Debye–Hückel

approximation is traditionally taken to be jfwj < 25 mV

(Ww < 1). Fig. 2 reveals that for Z = 1 the charge poten-

tial is distributed diffusely throughout the entire micro-

tube. As Z is increased, a region of non-neutral charge

of decreasing size exists near the tube wall. At higher

values of Ww the charge potential increases throughout

the tube for all values of Z. As Z increases, the EDL

is confined to a smaller region near the wall, and in-

creases in Ww have a diminishing influence on the charge

profile. Increases in both electro-kinetic radius and the

dimensionless wall potential have the same qualitative

influence on the transport dynamics.

Since the only driving force in purely electro-osmotic

flow is from an electric body force, the charge distribu-

tion will significantly influence the electro-osmotic veloc-

ity profiles. Recall from Eq. (6) that the local body force

in the momentum equation is qeEx, where qe = 2zeFc0
sinh(zeFw/RuT). Thus, Fig. 2 reveals that a non-zero

fluid body force exists in the tube core only for small

Z. The source of fluid momentum is located near the
tube wall for increasingly large Z and/or large Ww.

Fig. 3 illustrates dimensionless velocity profiles in the

microtube U(R) for several values of Z and Ww. Again,

predictions for electro-osmotic velocity at high wall po-

tential have been previously reported [6], but again, are

presented here to highlight their impact on the thermal

transport, and for completeness of the study. For the

scenario where electro-kinetic forces are present

throughout the tube (Z = 1), and for low wall potential

(jWwj = 1), the velocity profile is nearly parabolic, simi-

lar to what would be observed in conventional Poiseuille

flow. In this case the body force is distributed more uni-

formly across the tube cross-section. As jWwj increases,
the velocity magnitude throughout the tube increases,

and the velocity profile flattens to some extent, which

has qualitatively the same effect as increasing Z. At the

other electro-kinetic radius extreme shown (Z = 100),

the velocity is nearly uniform, and varying Ww has little

impact on the hydrodynamics. However, despite the

vanishing impact on the velocity profile, it will be shown

subsequently that Ww exercises a significant influence on

the thermal transport.



Fig. 4. Variation in dimensionless mean fluid velocity in the

microtube as a function of jWwj and Z.

Fig. 5. Radial profiles of the dimensionless Joule heating

source in the fluid as a function of jWwj and Z.
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The dependence of Z and Ww on the mean electro-os-

motic flow can be summarized by an investigation of the

average fluid velocity in the tube. The normalized aver-

age velocity versus Ww is shown in Fig. 4 for values of Z

ranging between 1 and 500. Increases in Z beyond 500

yielded negligible changes in U . At Z = 1, the velocity

is strongly dependent on Ww, and increasing jWwj is ob-
served to increase the induced flow. On the other hand,

for Z > 100, where the flow has reached its maximum

possible dimensionless velocity U = 1(u = ueo) through-

out nearly the entire channel, the mean velocity exhibits

virtually no dependence on Ww.

The predicted flow fields shown in Figs. 3 and 4, and

the Joule heating established by the current drawn in the

fluid result in thermal transport behavior that is unique

to electro-osmosis. The radial variation of the local

dimensionless Joule heating source term in the tube,

cosh2 (W), is plotted in Fig. 5 for several values of Z

and Ww. For low values of the dimensionless wall poten-

tial (jWwj < 1) the volumetric source due to Joule heating

is very nearly uniform with a magnitude of unity across

the tube for all values of Z. This results from the fact

that the electrical current flow in the fluid is distributed

nearly uniformly across the tube cross-section for low

wall potentials. Increases in the dimensionless wall po-

tential above this low-fw limit results in significant in-

creases in the Joule heating. This occurs primarily near

the tube wall for high values of the electro-kinetic radius

where the Joule heating may increase by several orders

of magnitude in the near-wall region. At low Z (corre-

sponding to large Debye length relative to the tube

radius), although the increase in Joule heating is

primarily manifest near the wall, large increases across

the entire tube are also observed. Fig. 5 illustrates clearly

that realistic magnitudes of the wall potential will result

in radically different convective heat transfer characteris-
tics than that resulting from an analysis employing the

Debye–Hückel approximation (low-fw linearization)

[34].

It is instructive to examine the total Joule heating in

the fluid per unit microtube length, Ee. This dimensional

quantity is determined by integrating the local Joule

heating source term over the cross-section of the tube

Ee ¼
Z a

0

i2er2prdr ð14Þ

Normalizing this parameter by the total Joule heating

per unit length in the low-fw limit ðE2
x=rÞpa2, the result

becomes

Ee ¼
Ee

ðE2
x=rÞpa2

¼ 2

Z 1

0

cosh2ðWÞRdR ð15Þ

Note that Ee is a function of Ww and Z, and is found by

integration of the Joule heating source profiles given in

Fig. 5. The total dimensionless Joule heating per unit

length of the tube Ee is plotted as a function of dimen-

sionless wall potential jWwj in Fig. 6 for values of Z

ranging from 1 to 1000. The behavior reveals that at

low wall potential (jWwj ! 0), Ee ! 1 for all values of

the electro-kinetic radius Z, reflective of the limiting

condition where the conduction current is spatially



Fig. 6. Normalized Joule heating per unit length of the

microtube as a function of jWwj and Z.

Fig. 7. Variation of the Joule heating parameter yielding a

constant microtube wall temperature condition with jWwj for
1 6 Z 6 1000.
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constant in the microtube at the low-fw limit, for which

cosh2 (W)! 1. Ee deviates from this lower bound at

increasingly higher dimensionless wall potential as the

electro-kinetic radius Z increases. In general, as jWwj in-
creases so does also the dimensionless total Joule heat-

ing, and Ee becomes dependent on Z. For a given

value of the wall potential, increases in the electro-ki-

netic radius yield a reduction in Ee, corresponding to

current flow in an ever smaller EDL near the microtube

wall. Finally, it is noted that increasing the dimension-

less wall potential impacts Ee rather dramatically, where

it may increase by as much a six orders of magnitude

from the low-fw limit to the highest value of jWwj inves-
tigated, jWwj = 10. For realistic applications utilizing

electro-osmotically generated flow, the total Joule heat-

ing per unit tube length may easily exceed that predicted

by the low-fw limit by several orders of magnitude. This

underlines the importance of accounting for realistic val-

ues of the wall potential in characterizing the thermal

transport.

Attention is now turned to the convective heat trans-

fer in the electro-osmotically generated flow for arbi-

trary values of the wall potential. The imposed

constant wall temperature condition will first be consid-

ered, followed by the imposed constant wall heat flux

condition.

3.1. Constant wall temperature condition

Recall that S represents the relative strengths of the

Joule heating and the imposed wall heat flux, and may

vary from zero (for diminishing applied voltage gradient

or infinite wall flux) to 1 (for infinite applied voltage

gradient or diminishing wall flux). Although the analysis

presented in the foregoing section assumed a uniform

heat flux at the microtube wall, the thermally fully-
developed condition for a constant wall temperature

boundary condition may also be explored. This corre-

sponds to the scenario where all volumetric heating in

the fluid is dissipated convectively at the wall, yielding

q00w < 0. Thus, the fully-developed condition for imposed

constant wall temperature is one of constant wall heat

flux as well, where q00w assumes a particular value which

is a function of the total Joule heating. For a given elec-

tro-kinetic radius and dimensionless wall potential, there

is thus a unique, negative value of the Joule heating

parameter (corresponding to fluid cooling) termed here

ST where a constant temperature prevails at the tube

wall, and the internal Joule heating is balanced by the

imposed (negative) wall heat flux. For this scenario,

dTm/dx = 0, and the resulting normalized Eq. (11) yields

0 ¼ 1þ ST

Z 1

0

cosh2ðWÞRdR ð16Þ

Information regarding ST and its dependence on prob-

lem parameters facilitates determination of the unknown

wall heat flux for the constant wall temperature condi-

tion. Its reciprocal, 1=ST ð¼ rq00w=E
2
xaÞ, is a measure of

the Joule heating which is dissipated at the wall convec-

tively, normalized by the Joule heating per unit length of

microtube for the low-fw limit. Fig. 7 shows values of ST

for a range of Z and jWwj. The figure illustrates that as

jWwj ! 0, ST !�2. This limiting value is in agreement

with the analytical solution for the low-fw limit reported

previously [34]. As jWwj increases, however, the magni-

tude of ST vanishes. Thus, a significantly higher wall flux

is required to dissipate the Joule heating in the fluid, cor-

responding to a smaller value of ST ð¼ E2
xa=rq

00
w for the

unique, negative value of q00w that yields a constant wall

temperature boundary).



Fig. 9. Radial profiles of dimensionless fluid temperature for

three values of jWwj and S = 0.1 for 1 6 Z 6 1000 for the

constant wall heat flux boundary condition.
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The variation of ST with jWwj shown in Fig. 7 may be

correlated with the equation

ST ¼ C1 tanh C2 j Ww j �C3ð Þ½ � � 1f g ð17Þ

where C1, C2 and C3 are functions of Z:

C1 ¼ 0:186Z�0:536 þ 0:993 ð18aÞ

C2 ¼ 0:276Z�1:95 þ 0:743 ð18bÞ

C3 ¼ 0:786þ 0:651 lnðZÞ ð18cÞ

This empirical fit of the predictions yields a peak error of

6% of the maximum ST (jSTjmax = 2), with a typical devi-

ation of approximately 0.5% for the range 1 6 Z 6 1000

and 0 6 jWwj 6 10.

For the constant-temperature boundary condition

described here, the magnitude of the wall temperature

required to dissipate the total Joule heating, hw, is of

interest, as it permits calculation of Tm � Tw once the

heat flux is known (from ST). The variation in hw is illus-

trated in Fig. 8 as a function of dimensionless wall po-

tential for a range of electro-kinetic radius. Note that

the dependence of hw is quite complex, exhibiting a

strong dependence on the dimensionless potential. Gen-

erally speaking, hw increases with increasing jWwj, vary-
ing by several orders of magnitude for a given Z.

However, the wall temperature is not a monotonic func-

tion of Z except in the limit as jWwj ! 0, as was shown

previously [34].

3.2. Constant wall heat flux condition

Consider again the scenario involving positive values

of S of arbitrary magnitude, for which the imposed wall

heat flux results in fluid heating. Figs. 9 and 10 present

radial profiles of the dimensionless temperature for sev-
Fig. 8. Dimensionless wall temperature as a function of jWwj
and Z for the constant wall temperature condition.
eral values of Z and Ww at S = 0.1 and 10, respectively.

Note that for the case of jWwj < 1 an analytical solution

for the temperature distribution has been reported [34],

and is therefore not shown here. The figures reveal that

increases in jWwj and/or S result in both higher magni-

tudes and higher radial gradients in h. For the condi-

tions S = 0.1 and jWwj = 2, there is little Joule heating

and the dependence of h on R and Z is rather small.

At the other extreme (S = 10 and jWwj = 10), the radial

variation in h is dramatic, where even for Z = 1000, h
varies radially between �1500 and +1500. Increases in

jWwj have a greater impact on the temperature distribu-

tion than increases in S. Changes in S yield nearly pro-

portional changes in h, whereas variations in Ww result

in much more dramatic changes. Larger values of wall

potential result in an increase in both the magnitude of

the total Joule heating and its radial variation, which

generates larger temperature gradients (see Fig. 5). The

greatest radial variations in h are observed for low elec-

tro-kinetic radius, Z. This observation is explained by

the greater local Joule heating in the central core of

the tube at low Z. Generally speaking, as Z increases,



Fig. 10. Radial profiles of dimensionless fluid temperature for

three values of jWwj and S = 10 for 1 6 Z 6 1000 for the

constant wall heat flux boundary condition.

Fig. 11. Variation of the fully-developed Nusselt number with

jWwj for 0.1 6 S 6 100 and 1 6 Z 6 1000.
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the total Joule heating is reduced (see Fig. 6), and thus, h
becomes less dependent on Z and further, is more uni-

form across the tube. It should be noted that for

jWwj < 2 and large values of Z, the dimensionless tem-

perature becomes independent of the Joule heating

parameter S, as was reported previously [34]. However,

no such limiting behavior exists for high wall potentials.

The variation in fully-developed Nusselt number with

jWwj is illustrated for 1 6 Z 6 1000 and 0.1 6 S 6 100 in

Fig. 11. The Nusselt number decreases monotonically

from its maximum value at jWwj ! 0. For low Z (where

the velocity profile is nearly parabolic) and S! 0,

Nu � 4.36, corresponding to the Nusselt number for

classical Poiseuille flow in a circular tube in the absence

of Joule heating [38]. The maximum Nusselt number is

dependent on the electro-kinetic radius Z and the mag-

nitude of the Joule heating parameter S. This maximum

increases with increasing Z and decreasing S. At large

values of Z (for which the velocity is independent of ra-

dius in the tube), the maximum Nu = 8 corresponds to

the limit of slug flow with vanishing Joule heating, ob-

served for jWwj ! 0 and/or S! 0. The Nusselt number

vanishes for both increasing jWwj and/or increasing S at
all values of Z, due to the increasingly large dimension-

less wall temperature which results from intense Joule

heating.

The significant dependence of the Nusselt number on

the wall potential is noted in Fig. 11. The magnitude of

the dimensionless wall potential in typical electro-osmo-

tic flow applications exceeds jWwj � 4. Fig. 11 reveals

that predicting the fully-developed Nusselt number (or

dimensionless wall temperature) using the low-fw
assumption results in values which are seriously in error.

The Nusselt number may be over-predicted by several

hundred percent and thus, the wall temperature would

be substantially under-predicted.

The variation of the fully-developed Nusselt number

with Z, S, and jWwj have been correlated using an

expression similar to Eq. (17)

Nu ¼ C4 tanh 0:75 j Ww j �C5ð Þ½ � � 1f g ð19Þ
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However, in this case the parameters depend in a rather

complex way on S and Z. C4 is described by the

following:

1 6 Z 6 100 :

C4 ¼ �Z0:115 0:23þ 4:36

0:72þ S=ð10þ ZÞ½ �2 þ 1:62

( )

ð20aÞ

100 6 Z 6 1000 :

C4 ¼ �Z0:015 1:81þ 0:29

0:94þ S=ð10þ ZÞ½ �2 þ 0:16

( )

ð20bÞ

C5 takes the following form:

1 6 Z 6 10 :

C5 ¼ 0:79þ 4:31 exp � 0:19 lnð342:5S=
ffiffiffi
Z

p
Þ

h i2� �
� 0:4=S ð21aÞ

10 6 Z 6 1000 :

C5 ¼ 10:49� 9:59 exp � 0:085 ln 0:044S=Zð Þ½ �2
n o

ð21bÞ

This correlation predicts the Nusselt number to with-

in 3% of the maximum Nusselt number (Numax = 8) for

the range of problem parameters studied here

(1 6 Z 6 1000, 0.1 6 S 6 100, and 0 6 jWwj 6 10).
4. Conclusions

Fully-developed electro-osmotic flow and heat trans-

fer in a circular tube has been investigated for arbitrary

wall zeta potentials for a range of electro-kinetic radius

and Joule heating magnitudes. Both constant wall tem-

perature and constant wall heat flux thermal boundary

conditions are considered. The coupled differential equa-

tions governing charge distribution, and momentum and

energy transport were solved numerically. The results

clearly show that realistic values of the wall zeta poten-

tial produce thermal transport behavior which differs

significantly from that predicted by an analysis employ-

ing the Debye–Hückel approximation. These differences

are manifest primarily in dimensionless temperature

profile and Nusselt number, with relatively little effect

on the fluid velocity profile. In general, higher values

of the wall potential result in temperature distributions

characterized by both significantly higher magnitudes

and radial gradients. The fully-developed Nusselt num-

ber is significantly lower than that predicted by the

low-fw analysis. The primary source of deviation occurs

due to the highly non-uniform nature of the local volu-
metric heating which prevails at high wall potential. The

results of this study clearly illustrate the error which may

be incurred in predicting the thermal transport in elec-

tro-osmotic flow assuming low wall potential.
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